Extensions 1→N→G→Q→1 with N=C32×Q16 and Q=C2

Direct product G=N×Q with N=C32×Q16 and Q=C2
dρLabelID
Q16×C3×C6288Q16xC3xC6288,831

Semidirect products G=N:Q with N=C32×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×Q16)⋊1C2 = C3×C8.6D6φ: C2/C1C2 ⊆ Out C32×Q16964(C3^2xQ16):1C2288,262
(C32×Q16)⋊2C2 = C3210SD32φ: C2/C1C2 ⊆ Out C32×Q16144(C3^2xQ16):2C2288,303
(C32×Q16)⋊3C2 = C3×S3×Q16φ: C2/C1C2 ⊆ Out C32×Q16964(C3^2xQ16):3C2288,688
(C32×Q16)⋊4C2 = C3×D24⋊C2φ: C2/C1C2 ⊆ Out C32×Q16964(C3^2xQ16):4C2288,690
(C32×Q16)⋊5C2 = Q16×C3⋊S3φ: C2/C1C2 ⊆ Out C32×Q16144(C3^2xQ16):5C2288,774
(C32×Q16)⋊6C2 = C24.28D6φ: C2/C1C2 ⊆ Out C32×Q16144(C3^2xQ16):6C2288,776
(C32×Q16)⋊7C2 = C24.35D6φ: C2/C1C2 ⊆ Out C32×Q16144(C3^2xQ16):7C2288,775
(C32×Q16)⋊8C2 = C3×Q16⋊S3φ: C2/C1C2 ⊆ Out C32×Q16964(C3^2xQ16):8C2288,689
(C32×Q16)⋊9C2 = C32×SD32φ: C2/C1C2 ⊆ Out C32×Q16144(C3^2xQ16):9C2288,330
(C32×Q16)⋊10C2 = C32×C8.C22φ: C2/C1C2 ⊆ Out C32×Q16144(C3^2xQ16):10C2288,834
(C32×Q16)⋊11C2 = C32×C4○D8φ: trivial image144(C3^2xQ16):11C2288,832

Non-split extensions G=N.Q with N=C32×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×Q16).1C2 = C3×C3⋊Q32φ: C2/C1C2 ⊆ Out C32×Q16964(C3^2xQ16).1C2288,263
(C32×Q16).2C2 = C327Q32φ: C2/C1C2 ⊆ Out C32×Q16288(C3^2xQ16).2C2288,304
(C32×Q16).3C2 = C32×Q32φ: C2/C1C2 ⊆ Out C32×Q16288(C3^2xQ16).3C2288,331

׿
×
𝔽